Dynamic Graph Neural Networks for Sequential Recommendation
نویسندگان
چکیده
Modeling user preference from his historical sequences is one of the core problems sequential recommendation. Existing methods in this field are widely distributed conventional to deep learning methods. However, most them only model users' interests within their own and ignore dynamic collaborative signals among different sequences, making it insufficient explore preferences. We take inspiration graph neural networks cope with challenge, modeling sequence into framework. propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects through structure, exploring interactive behavior users items time order information. Furthermore, we design extract user's preferences graph. Consequently, next-item prediction task recommendation converted link between node item Extensive experiments on four public benchmarks show that DGSR outperforms several state-of-the-art Further studies demonstrate rationality effectiveness
منابع مشابه
dynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولSocial Recommendation in Dynamic Networks
Barbier G (2012) Finding provenance data in social media. Doctoral dissertation, Arizona State University Facebook (2012) https://www.facebook.com/photo.php? fbid=268506716591158 & set=a.24724116871771349 889.247222755386221&type=3&theater. Accessed 2 Oct 2013 Leskovec J, Backstrom L, Kleinberg J (2009) Memetracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD inte...
متن کاملGraph based Recommendation System in Social Networks
Media content recommendation is a popular trend now days. Twitter, Facebook, and Google+ are very popular in the world. The growth of social networks has made recommendation systems one of the intensively studied research area in the last decades. Recommendation systems can be based on content filtering, collaborative filtering or both. In this paper, we propose a novel approach for media conte...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2022
ISSN: ['1558-2191', '1041-4347', '2326-3865']
DOI: https://doi.org/10.1109/tkde.2022.3151618